7\
NE A

PostgreSQL Tips & Tricks For
App Devs

Chris Ellis - @intrbiz@bergamot.social

Hello!

e |I'm Chris
o IT jack of all trades, studied Electronic Engineering
o These days, mostly a technical architect
o Spend most of my time building apps on top of PostgreSQL

e Been using PostgreSQL for about ~20 years
e \Worked on various PostgreSQL and loT projects

chris@nexteam.co.uk https://nexteam.co.uk

350 Partormance

——— = Classes Your Account @
Your Membership 8-
Classes |
8
Pay As You Go =
Come and train on an ad-hoc basis, pay per session, ideal for .
students starting out. i
£25 per year - Membership Fee
RSy (8 ST e A £8 per class - Each class
Intermediate Your next payment will be taken on
16:30 - 17:30
Efiesciasel Kingston Dojo

Your Balance
Wednesday 06 September 2023

Pay As You Go 2
Train as you need
Come and train on an ad- Classes until

Advanced

- _ : e 17:00 - 18:00
Kingston Dojo

¥ Shropshire

Council

05 October 2023

Home Contactus AtoZ of services Frequently asked questions

Tuesday 12 September 2023

Your Details

Shropshire Council Family Information Directory Community Directory

Hello John Smith

8th Kyu

Email: info@mokuso.cloud
Mobile: 07848123456
Member since 05 September 2023

returned 98 results in 0.13 Seconds

63 (Bridgnorth) Squadron Air Training Corps
Air Training Corps for young people between 13 and 20 years

Filter by category:

& education and
learning

Albrighton Trust O leisure and culture

Albrighton Trust provides recreation and education for people with disabilities. community and living

health and social care

Apprenticeships

environment and
planning

(=]
[u]
=]
Information about apprenticeships
O jobs and careers
Archaeology Service O business
The Archacology Service aims to provide community focused services which preserve and interpret o
the archasological heritage of the county. o
[u]

transport and strests
advice and benefits

housing

Ashley Music School
Ashley Music School offers tuition in piano and all keyboard, voice, woodwind, strings, drum kit,
electric and acoustic guitar, recorders and theory.
Filter by location:

Bishop's Castle IT Centre & shropshire wide

-
= X
Home Classes
Account

R

chris@nexteam.co.uk https://nexteam.co.uk

<3 PostgreSQL

chris@nexteam.co.uk https://nexteam.co.uk

Right Tool For The Job?

chris@nexteam.co.uk https://nexteam.co.uk

Text Search

chris@nexteam.co.uk https://nexteam.co.uk

AS A: customer

I Want: to be easily able to find an
applicable fault code for my appliance
when raising a repair

So That: to get a better chance of my

appliance being fixed first time
-

chris@nexteam.co.uk https://nexteam.co.uk

Text Search - Simple

SELECT *

FROM reference.fault code
WHERE

to_tsvector('english’,
title || ' ' || coalesce(description, '')
)

@@ to tsquery('english', 'leak');

chris@nexteam.co.uk

https://nexteam.co.uk

Text Search - Simple Yet Fast

CREATE INDEX fc_text 1dx
ON reference.fault code

USING GIN
(to_tsvector('english',
title || ' ' || coalesce(description, '')

))s

chris@nexteam.co.uk

https://nexteam.co.uk

Text Search - Simple Yet Fast

Seq Scan on fault code (cost=0.00..870.51 rows=15
width=170) (actual time=0.084..24.966 rows=37
loops=1)

Rows Removed by Filter: 2978
Planning Time: ©0.172 ms
Execution Time: 25.069 ms

chris@nexteam.co.uk

https://nexteam.co.uk

Text Search - Simple Yet Fast

Bitmap Heap Scan on fault code (cost=3.03..22.53
rows=15 width=170) (actual time=0.044..0.167 rows=37
loops=1)

Heap Blocks: exact=20

-> Bitmap Index Scan on fc_text idx
(cost=0.00..3.03 rows=15 width=0) (actual
time=0.027..0.028 rows=37 loops=1)
Planning Time: 0.308 ms
Execution Time: 0.271 ms

chris@nexteam.co.uk

https://nexteam.co.uk

Text Search - Realistic

ALTER TABLE reference.fault code
ADD COLUMN vector

J

CREATE INDEX fc vector idx
ON reference.fault code
USING GIN (vector);

chris@nexteam.co.uk https://nexteam.co.uk

Text Search - Realistic

UPDATE reference.fault code
SET vector =
setweight(
to tsvector(coalesce(category,'')), 'A’
) |
setweight(
to tsvector(coalesce(description,'')), 'B’
)

chris@nexteam.co.uk https://nexteam.co.uk

Text Search - Realistic

SELECT
ts rank cd(vector,
websearch _to tsquery(...)), *
FROM reference.fault code
WHERE vector @@ websearch to tsquery(
‘english', 'leaking door')
ORDER BY 1;

chris@nexteam.co.uk https://nexteam.co.uk

AS A: complaints analyst

I Want: to be able to filter call
recordings by matched keywords / topics

So That: to prioritize which calls to
proactively investigate

chris@nexteam.co.uk https://nexteam.co.uk

Tags [/ Topics / Keywords
CREATE TABLE comms.call (

id NOT NULL,

phone NOT NULL,

transcript NOT NULL,

topics ,
)

chris@nexteam.co.uk https://nexteam.co.uk

Tags [/ Topics / Keywords

SELECT *
FROM comms.call
WHERE topics @> ARRAY['breakdown’];

SELECT *
FROM comms.call
WHERE topics @> ARRAY|['breakdown’,

'boiler’|;

chris@nexteam.co.uk

https://nexteam.co.uk

Tags [/ Topics / Keywords
CREATE TABLE comms.call (

id NOT
phone NOT
transcript NOT
keywords

)

NULL,
NULL,
NULL,

chris@nexteam.co.uk

https://nexteam.co.uk

Tags [/ Topics / Keywords

SELECT *
FROM comms.call
WHERE keywords @>
'{"make": "bosch"}":: ;

chris@nexteam.co.uk https://nexteam.co.uk

Tags [/ Topics / Keywords

CREATE INDEX topics idx
ON comms.call USING GIN (topics);

CREATE INDEX keywords idx
ON comms.call USING GIN (keywords);

chris@nexteam.co.uk https://nexteam.co.uk

chris@nexteam.co.uk https://nexteam.co.uk

AS A: customer

I Want: to find classes at venues near to
me

So That: I can book classes that I can
easily get to

chris@nexteam.co.uk https://nexteam.co.uk

Location Search

CREATE TABLE club.venue (

id NOT NULL,
name NOT NULL,
description NOT NULL,
address NOT NULL,

location

https://nexteam.co.uk

chris@nexteam.co.uk

Location Search

SELECT *
FROM club.venue
WHERE st dwithin(location, $1, 2000);

chris@nexteam.co.uk https://nexteam.co.uk

AS A: repair provider

I Want: to allocate visits to different
engineers nearest to their operating
areas

So That: we can optimally allocate which

engineers attend which appointments
-

chris@nexteam.co.uk https://nexteam.co.uk

Location Matching

CREATE TABLE provider.engineer (

id NOT NULL,
name NOT NULL,
area

)5

chris@nexteam.co.uk https://nexteam.co.uk

Location Matching

SELECT *

FROM provider.engineer
WHERE st _contains(area, $1);

chris@nexteam.co.uk https://nexteam.co.uk

Location Matching

SELECT *
FROM provider.engineer

WHERE st _intersects(area,
st _buffer(
st point(-71.104, 42.315, 4326),
0.025

chris@nexteam.co.uk https://nexteam.co.uk

Location Search / Matching - Faster

CREATE INDEX venue location idx
ON club.venue GIST (location);

chris@nexteam.co.uk https://nexteam.co.uk

All Together Now

SELECT *

FROM search.content

WHERE vector @@ to tsquery('library’')

AND st dwithin(location, my location, 2000)
AND tags @> ARRAY['service catalogue'];

chris@nexteam.co.uk https://nexteam.co.uk

Unknown Unknowns

chris@nexteam.co.uk https://nexteam.co.uk

AS A: product owner

I Want: to be able to analyse how the
guestions we ask customers effect sales

So That: we can optimise the get a quote
user flow

chris@nexteam.co.uk https://nexteam.co.uk

Unknown Unknowns

CREATE TABLE insurance.quote (

id NOT NULL,
customer_id NOT NULL,
status NOT NULL,
price NOT NULL,

answers

chris@nexteam.co.uk https://nexteam.co.uk

Unknown Unknowns

SELECT count(*),

count(*) FILTER (WHERE (answers ->> 'locks')
IS NULL),

count(*) FILTER (WHERE (answers ->> 'locks')
IS NOT NULL),

count(*) FILTER (WHERE (answers ->> "locks"')
= '3-lever'),

count(*) FILTER (WHERE (answers ->> 'locks"')
= 'unknown')

FROM insurance.quotes;
-

chris@nexteam.co.uk https://nexteam.co.uk

AS A: tech-lead

I Want: to prevent my developers
inserting invalid data

So That: we find problems, before they
really become problems

chris@nexteam.co.uk https://nexteam.co.uk

Check Constraints

ALTER TABLE insurance.quote
ADD CONSTRAINT answers_ chk

CHECK (

jsonb_typeof(answers) = 'object'’

)5

chris@nexteam.co.uk https://nexteam.co.uk

chris@nexteam.co.uk https://nexteam.co.uk

AS A: customer

I Want: I don’t want to get billed twice
for my subscription

So That: should be obvious really...

chris@nexteam.co.uk https://nexteam.co.uk

Subscriptions

CREATE TABLE club.subscription

id NO
member 1id NOT
plan id NOT

status NOT

NU
NU
NU
NU

chris@nexteam.co.uk

https://nexteam.co.uk

Subscriptions

CREATE UNIQUE INDEX active_ subs

ON club.subscription
(member_id)

WHERE status = 'active';

chris@nexteam.co.uk https://nexteam.co.uk

Invoicing With SQL

S S e

——— \
- i, R i A
*”')) B el Sy

o

D

chris@nexteam.co.uk https://nexteam.co.uk

AS A: app developer

I Want: to get paid by the users of my
app

So That: all is good in the world

chris@nexteam.co.uk https://nexteam.co.uk

Generate Invoices - Writable CTEs

WITH invoice commission AS (
UPDATE billing.commission_reconrd
SET invoice id = 123
WHERE invoice_id IS NULL
RETURNING *
) INSERT INTO billing.invoice
SELECT 123, current _date, sum(value) AS total
FROM invoice_commission;

chris@nexteam.co.uk https://nexteam.co.uk

Get Latest Invoice - Lateral Joins

SELECT t.*, q.*

FROM platform.tenant t

LEFT JOIN LATERAL (
SELECT 1invoice date, total
FROM billing.invoice 1
WHERE i.tenant id = t.id
ORDER BY invoice date DESC
LIMIT 1

) g ON (true);

chris@nexteam.co.uk https://nexteam.co.uk

Tasks & Queues

chris@nexteam.co.uk https://nexteam.co.uk

AS A: platform

I Want: ensure that we process
subscription payments and payment events,
and can replay them if needed

So That: our payments handling does not

require manual intervention
-

chris@nexteam.co.uk https://nexteam.co.uk

Queues - A Simple Queue / Task

CREATE TABLE queue.event (

created NOT NULL,
updated ,
status NOT NULL,
payload

) ;

chris@nexteam.co.uk https://nexteam.co.uk

Queues - Fetch A Batch

SELECT ctid, * FROM queue.event

WHERE status < 5 AND (status = © OR
updated < (now() - '1 hour'::))

ORDER BY created DESC

LIMIT 1 /* Or more */

FOR UPDATE SKIP LOCKED;

chris@nexteam.co.uk https://nexteam.co.uk

Queues - Index Time

CREATE INDEX queue event idx
ON queue.event (created)
WHERE status < 5;

chris@nexteam.co.uk https://nexteam.co.uk

Queues - Fetch A Batch

Limit
(cost=0.29..0.86 rows=10 width=54)
(actual time=0.060..0.114 rows=10 loops=1)
-> LockRows
(cost=0.29..4920.33 rows=86401 width=54)
(actual time=0.057..0.109 rows=10 loops=1)
-> Index Scan Backward using queue_event _idx on event
(cost=0.29..4056.32 rows=86401 width=54)
(actual time=0.037..0.060 rows=10 loops=1)
Filter: ((status < 5) AND ((status = @) OR
(updated < (now() - '1 hour'::interval))))
Planning Time: ©.260 ms
Execution Time: ©.179 ms

chris@nexteam.co.uk https://nexteam.co.uk

Queues - Retry An Event

UPDATE queue.event

SET updated = now(),
status = status + 1

WHERE ctid = '(719,117)"';

chris@nexteam.co.uk https://nexteam.co.uk

Queues - Processed An Event

UPDATE queue.event

SET updated = now(),
status = 2147483647

WHERE ctid = '(720,2)";

chris@nexteam.co.uk https://nexteam.co.uk

d The Gap

In

M

i~
=
<]
<
£
]
*
o
=
=
n
o
=]
=

chris@nexteam.co.uk

AS A: DBA

I Want: efficiently store energy meter
data in PostgreSQL

So That: we don’t waste too much storage
space

chris@nexteam.co.uk https://nexteam.co.uk

Roll Ups
CREATE TABLE iot.daily reading (

meter 1id NOT NULL,
read range NOT NULL,
energy ,

energy profile
PRIMARY KEY (device id, read range)

chris@nexteam.co.uk https://nexteam.co.uk

Roll Ups

t_xmin t_xmax t_cid t_xvac t_ctid t_infomask | t_infomask t_hoff
2
4 4 4 4 6 2 2 1
24 bytes
device id read_at temperature light
16 8 4 4
32 bytes

chris@nexteam.co.uk https://nexteam.co.uk

AS A: customer

I Want: to be able to visualise my energy
consumption

So That: I can better understand how I
consume my energy and can reduce my usage

chris@nexteam.co.uk https://nexteam.co.uk

Generate Series - Presenting Data

SELECT r.device_id, t.time, array_agg(r.read at),
avg(r.temperature), avg(r.light)
FROM generate_series(
'2022-10-06 00:00:00" : : TIMESTAMP,
'2022-10-07 ©00:00:00' : : TIMESTAMP, '10 minutes') t(time)
JOIN iot.alhex reading r
ON (r.device_id = '26170b53-ae8f-464e-8ca6-2faeff8addol’ : :UUID
AND r.read at >= t.time
AND r.read at < (t.time + '10 minutes'))
GROUP BY 1, 2

ORDER BY t.time;
el e e

chris@nexteam.co.uk https://nexteam.co.uk

Window Functions - Roll Up

SELECT
commission AS daily total,
sum(commission) OVER
(PARTITION BY date trunc('week', day))
AS weekly total

FROM billing.daily;

chris@nexteam.co.uk https://nexteam.co.uk

Window Functions - Counters

SELECT
day,
energy,
energy - coalesce(lag(energy)
OVER (ORDER BY day), ©) AS consumed
FROM iot.meter reading
ORDER BY day;

chris@nexteam.co.uk https://nexteam.co.uk

Custom Aggregates - Mind The Gap

WITH days AS (
SELECT t.day: :DATE
FROM generate series('2017-01-01"'::DATE,
'2017-01-15"::DATE, '1 day') t(day)
), data AS (
SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE
AND day <= '2017-01-15"::DATE

https://nexteam.co.uk

chris@nexteam.co.uk

Custom Aggregates - Mind The Gap

SELECT day,
coalesce(energy,
(((next_read - last _read)

/ (next_read time - last read time))

* (day - last read time))

+ last read) AS energy interpolated
FROM (

... from next slide ...

) 4
ORDER BY day

chris@nexteam.co.uk https://nexteam.co.uk

Custom Aggregates - Mind The Gap

SELECT t.day, d.energy,
last(d.day) OVER lookback AS last read_time,
last(d.day) OVER lookforward AS next read time,
last(d.energy) OVER lookback AS last read,
last(d.energy) OVER lookforward AS next read

FROM days t

LEFT JOIN data d ON (t.day = d.day)

WINDOW
lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

chris@nexteam.co.uk https://nexteam.co.uk

Custom Aggregates - Mind The Gap

CREATE FUNCTION last _agg(,)

RETURNS LANGUAGE SQL IMMUTABLE STRICT AS $%
SELECT $2;

$%;

CREATE AGGREGATE last (
sfunc = last agg,
basetype = ,
stype =

)

chris@nexteam.co.uk https://nexteam.co.uk

Any Questions?

RS S, — - R = B e e e SRS == —— —— T
1
—a
%
e T TR
po e S
INTAN
[-

chris@nexteam.co.uk https://nexteam.co.uk

Appendix - Mind The Gap

WITH days AS (
SELECT t.day: :DATE
FROM generate_series('2017-01-01'::DATE, '2017-01-15'::DATE, 'l day') t(day)
), data AS (
SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE AND day <= '2017-01-15'::DATE
)
SELECT day, coalesce(energy_import_wh, (((next_read - last_read) / (next_read_time - last_read_time)) * (day -
last_read_time)) + last_read) AS energy_import_wh_interpolated
FROM (
SELECT t.day, d.energy_import_wh,
last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy_import_wh) OVER lookback AS last_read,
last(d.energy_import_wh) OVER lookforward AS next_read
FROM days t
LEFT JOIN data d ON (t.day = d.day)
WINDOW
lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)
) q ORDER BY g.day

chris@nexteam.co.uk https://nexteam.co.uk

